36 lines
1.1 KiB
Markdown
36 lines
1.1 KiB
Markdown
```
|
|
docker build -t image_generation .
|
|
docker run --rm -it -p 12343:80 image_generation
|
|
```
|
|
|
|
```
|
|
import requests
|
|
import cv2
|
|
import base64
|
|
import numpy as np
|
|
|
|
endpoint = "http://192.168.2.64:12343/image"
|
|
|
|
prompt = "Majestic mountain landscape with snow-capped peaks, autumn foliage in vibrant reds and oranges, a turquoise river winding through a valley, crisp and serene atmosphere, ultra-realistic style."
|
|
prompt = "A group of kids happily playing in a joy environment"
|
|
#prompt = "A bitcoin behaving like a king, surrounded by small alternative coins. Detailed, geometric style"
|
|
|
|
json = {
|
|
"prompt": prompt,
|
|
"num_inference_steps": 10,
|
|
"size": "512x512",
|
|
"seed": 123456,
|
|
}
|
|
|
|
for inf_step in [1, 4, 10, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100]:
|
|
json["num_inference_steps"] = inf_step
|
|
|
|
%time r = requests.post(endpoint, json=json)
|
|
print("Status code", r.status_code)
|
|
|
|
# Image
|
|
png_as_np = np.frombuffer(base64.b64decode(r.text), dtype=np.uint8)
|
|
image_bgr = cv2.imdecode(png_as_np, cv2.IMREAD_COLOR)
|
|
|
|
cv2.imwrite("sample_img_{}.png".format(json["num_inference_steps"]), image_bgr)
|
|
``` |