Url content
This commit is contained in:
36
app_img_gen/Dockerfile
Normal file
36
app_img_gen/Dockerfile
Normal file
@@ -0,0 +1,36 @@
|
||||
FROM continuumio/anaconda3
|
||||
|
||||
# Based on:
|
||||
# https://www.reddit.com/r/StableDiffusion/comments/1gxbwp1/npu_accelerated_sd15_lcm_on_130_rk3588_sbc_30/
|
||||
|
||||
WORKDIR /home
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install git-lfs && \
|
||||
# RKNN lib
|
||||
git clone https://github.com/airockchip/rknn-toolkit2.git && \
|
||||
cp rknn-toolkit2/rknpu2/runtime/Linux/librknn_api/aarch64/librknnrt.so /usr/lib && \
|
||||
# Stable Diffusion
|
||||
git clone https://huggingface.co/happyme531/Stable-Diffusion-1.5-LCM-ONNX-RKNN2 && \
|
||||
# Dependencies
|
||||
pip install diffusers pillow "numpy<2" rknn-toolkit-lite2 torch transformers
|
||||
|
||||
WORKDIR /home/Stable-Diffusion-1.5-LCM-ONNX-RKNN2
|
||||
|
||||
# FastAPI
|
||||
RUN conda install -c conda-forge libgl
|
||||
RUN pip install fastapi[standard] opencv-python
|
||||
|
||||
COPY ./app /home/app
|
||||
|
||||
# Replace writing image path
|
||||
RUN sed -i '/return os.path.join(out_folder, out_fname + ".png")/c \ \ \ \ return "images/image.png"' ./run_rknn-lcm.py
|
||||
RUN sed -i '/os.makedirs(out_folder, exist_ok=True)/c \ \ \ \ os.makedirs("images", exist_ok=True)' ./run_rknn-lcm.py
|
||||
# Multi core NPU
|
||||
RUN sed -i 's/RKNNLite.NPU_CORE_AUTO/RKNNLite.NPU_CORE_0_1_2/g' ./run_rknn-lcm.py
|
||||
|
||||
# CMD ["/bin/bash"]
|
||||
CMD ["fastapi", "run", "/home/app/main.py", "--port", "80"]
|
||||
|
||||
# docker build -t image_generation .
|
||||
# docker run --rm --privileged --device /dev/rknpu:/dev/rknpu --device /dev/dri:/dev/dri --security-opt systempaths=unconfined -p 12343:80 image_generation
|
||||
0
app_img_gen/app/__init__.py
Normal file
0
app_img_gen/app/__init__.py
Normal file
48
app_img_gen/app/main.py
Normal file
48
app_img_gen/app/main.py
Normal file
@@ -0,0 +1,48 @@
|
||||
from fastapi import FastAPI, Response
|
||||
from fastapi.responses import FileResponse
|
||||
from pydantic import BaseModel
|
||||
import cv2
|
||||
import subprocess
|
||||
import base64
|
||||
|
||||
class Item(BaseModel):
|
||||
prompt: str | None = None
|
||||
size: str | None = "512x512"
|
||||
num_inference_steps: int | None = 4
|
||||
seed: int | None = 123456
|
||||
|
||||
def generate_image(item):
|
||||
print(item)
|
||||
# Parameters
|
||||
seed = item.seed
|
||||
num_inference_steps = item.num_inference_steps
|
||||
size = item.size
|
||||
prompt = item.prompt
|
||||
command = 'python ./run_rknn-lcm.py --seed {} -i ./model -o ./images --num-inference-steps {} -s {} --prompt "{}"'.format(seed, num_inference_steps, size, prompt)
|
||||
|
||||
# Inference
|
||||
output = subprocess.run(command, shell=True, capture_output=True)
|
||||
print(output, "\n")
|
||||
|
||||
# Path to image
|
||||
path_img = "./images/image.png" # glob.glob("./images/*")[0]
|
||||
# Read
|
||||
img = cv2.imread(path_img)
|
||||
return img
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
|
||||
@app.get("/")
|
||||
def read_root():
|
||||
return {"Hello": "World"}
|
||||
|
||||
@app.post("/image")
|
||||
def get_image(item: Item):
|
||||
# Generate
|
||||
image = generate_image(item)
|
||||
# Encode
|
||||
retval, buffer = cv2.imencode('.png', image)
|
||||
png_as_text = base64.b64encode(buffer)
|
||||
# Return
|
||||
return Response(png_as_text)
|
||||
Reference in New Issue
Block a user